

FSAN/ELEG815: Statistical Learning Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

X: Neural Networks

What is Deep Learning?

Artificial Inteligence

Any technique that enables computers to mimic human behavior

Machine Learning

Ability to learn without explicity being programed

Deep Learning

Extract patterns from data using neural networks 3 (3 4 7 2 1 7 4 2 3 5

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice Can we learn the **underlying features** directly from data?

Line and Edges

Eyes, Nose and Ears

Facial Structure

Why Now?

	\sim	
1952		Stochastic Gradient Descent
1958		Preceptron Learnable Weights
1986		Backpropagation Multi-layer Perceptron
1995		Deep Convolutional NN Digit Recognition

Neural Networks date back decades, so why the resurgence?

- 1. Big Data
 - Large
 Datasets
 - Easier Collection and Storage
- IM ... GENET

2. Hardware

- Graphics
 Processing
 Units (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Activation Functions

$$\hat{\mathbf{y}} = \mathbf{g} \left(\mathbf{w}_0 + \mathbf{X}^{\top} \mathbf{W} \right)$$

• Example: sigmoid function

$$g(\mathbf{Z}) = \sigma(\mathbf{Z}) = \tfrac{1}{1+e^{-\mathbf{Z}}}$$

< ロ > < 母 > < 臣 > < 臣 > 臣 の Q · 7/75

Common Activation Functions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Importance of Activation Functions

The purpose of the activation function is to **introduce non-linearities** into the network

What if we want to build a neural network to distinguish green vs red points?

The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into

Linear activation functions produce linear decisions no matter the network size Non-linearities allow us to approximate arbitrarily complex functions

The Perceptron: Example

We have
$$\mathbf{w}_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
 $\hat{\mathbf{y}} = g(\mathbf{w}_0 + \mathbf{X}^\top \mathbf{W})$

$$\widehat{\mathbf{y}} = g\left(\mathbf{w}_0 + \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}^\top \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{\mathbf{y}} = g(\underbrace{1+3\mathbf{x}_1-2\mathbf{x}_2})$$

This is just a line in 2D

◆□ → ◆母 → ◆ ■ → ◆ ■ → ○ へ ○ 11/75

The Perceptron: Example

FSAN/ELEG815

The Perceptron: Example

FSAN/ELEG815

Building Neural Network with Perceptron

Building Neural Network with Perceptron

$$\mathsf{z} = \mathsf{w}_0 + \sum_{j=1}^m \mathsf{x}_j \mathsf{w}_j$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 15/75

FSAN/ELEG815

Combining Perceptrons

Consider the target function in the figure which is a Boolean XOR function.

The perceptron cannot implement this classification.

Decompose the f into two perceptrons, corresponding to the lines in the figure.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ へ ○ 16/75

Combining Perceptrons

$$f = \mathsf{g}_1 \overline{\mathsf{g}_2} + \overline{\mathsf{g}_1} \mathsf{g}_2$$

where AND is represented by multiplication, OR by addition and overbar for negation.

Combining Perceptrons

OR and AND can be implemented by the perceptron:

Everything coming to a node is summed and then transformed by $sign(\cdot)$ to get the final output

FSAN/ELEG815

Creating Layers

(a) OR of the inputs $z_1\overline{z_2}$ and $\overline{z_1}z_2$ (b) The blue and red weights simulate the required ANDS ($z_1\overline{z_2}$ and $\overline{z_1}z_2$). Negative in te weights handle negations.

The Multilayer Perceptron

$$z_1(\mathbf{x}) = \mathbf{w}_1^\top \mathbf{x}$$
 and $z_2(\mathbf{x}) = \mathbf{w}_2^\top \mathbf{x}$ are perceptrons:

The Multilayer Perceptron

 $z_1(x) = w_1^\top x$ and $z_2(x) = w_2^\top x$ are perceptrons:

3 layers compare to the perceptron (one) "Feedforward" No backward pointing arrows and no jumps to other layers

A Powerful Model

Let's consider now a dis target function:

We can model more complex functions by adding more nodes (hidden unites) in the hidden layers (more perceptrons in the decomposition of f)

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers:

$$\mathsf{z}_{\boldsymbol{i}} = \mathsf{w}_{0,\boldsymbol{i}} + \sum_{j=1}^{m} \mathsf{x}_{j} \mathsf{w}_{j,\boldsymbol{i}}$$

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ○ QC 25/75

Interpreting a Linear Classifier: Visual Viewpoint

INIVERSITY

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interpreting a Linear Classifier: Geometric Viewpoint

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 27/75

Plot created using Wolfram Cloud

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Multi-output Multi-layer perceptron

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ Q ○ 29/75

Multi-output Multi-layer perceptron

$$\begin{split} \mathsf{z}_3 &= \mathsf{w}_{0,3}^{(1)} + \sum_{j=1}^m \mathsf{x}_j \mathsf{w}_{j,3}^{(1)} \\ \mathsf{z}_3 &= \mathsf{w}_{0,3}^{(1)} + \mathsf{x}_1 \mathsf{w}_{1,3}^{(1)} + \mathsf{x}_2 \mathsf{w}_{2,3}^{(1)} + \mathsf{x}_3 \mathsf{w}_{3,3}^{(1)} \end{split}$$
 Generally

(1)

$$\mathbf{z} = \mathbf{W}^{(1)\top} \mathbf{x}^{(0)} + \mathbf{w}_0^{(1)}$$

m

< □ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ 30/75

FSAN/ELEG815

Single Layer Neural Network

Network with many layers - Example

Classify "1" vs "5". Decompose the two digits into basic components:

- \blacktriangleright Every "1" should contain $\phi_1,\,\phi_2$ and ϕ_3
- Every "5" should contain ϕ_3 , ϕ_4 , ϕ_5 and ϕ_6 , perhaps a little of ϕ_1

These shapes are *features* of the input. We want ϕ_1 to be large (close to 1) if the corresponding feature is in the input image and small (close to -1) if not.

Network with many layers - Example

 ϕ_1 is feature function which computes the presence (+1) and absence (-1) of the corresponding feature.

If we feed in "1", ϕ_1 , ϕ_2 and ϕ_3 compute +1 and ϕ_4 , ϕ_5 and ϕ_6 compute -1. Combining with the signs of the weights, z_1 will be positive and z_2 will be negative.

Deep Neural Network

input **x** hidden layers $1 \le l \le L$ output layer l = L

When f is not strictly decomposable into perceptrons, but the decision boundary is smooth (θ), then a multilayer perceptron can be close to implementing f.

FSAN/ELEG815

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ Q ○ 35/75

Deep Neural Network

Combining Perceptrons

Consider a simple perceptron $z(\boldsymbol{x}) = \boldsymbol{w}^\top \boldsymbol{x}$:

- θ(z) =sign(z) : Learning the weights is hard combinatorial problem (not smooth)
- θ(z) = tanh(z) : differentiable approximation to sign(·) that allows analytic methods for learning

Example problem

Will I pass this class? Let's start with a simple two feature model:

- x₁ Number of lectures you attend
- ► x₂ Hours spent studying

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 37/75

Example problem: Will I pass this class?

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = うへで 38/75

Quantifying Loss

The loss of a network measures the cost incurred from incorrect predictions

Empirical Loss

The empirical loss measures the total loss over the entire dataset

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

Mean Square Error Loss

Mean square error loss can be used with models that output a continuous real numbers

Training Neural Networks: Loss Optimization

Find the network weights that achieve the lowest loss

$$\mathbf{W}^* = \operatorname*{arg\,min}_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}\left(f(\mathbf{x}_i; \mathbf{W}), \mathbf{y}_{(i)}\right)$$

$$\mathbf{W}^* = \operatorname*{arg\,min}_{\mathbf{W}} J(\mathbf{W})$$

Remember:

$$\mathbf{W} = \left\{\mathbf{W}^{(0)}, \mathbf{W}^{(1)}, \ldots\right\}$$

The loss function is a function of the network weights

Training Neural Networks: Loss Optimization

- 1. Randomly pick an initial (w_1, w_2)
- 2. Compute the gradient:

 $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$

- 3. Take a small step in the opposite direction of the gradient
- 4. Repeat until convergence

Computing Gradients: Backpropagation

Computing Gradients: Backpropagation

Computing Gradients: Backpropagation

How the network operates

input **x** hidden layers $1 \le l \le L$ output layer l = L

How the network operates

$$\mathbf{w}_{ij}^{(l)} = \begin{cases} 1 \leq l \leq L & \text{Layers} \\ 0 \leq i \leq d^{(l-1)} & \text{Layers} \\ 1 \leq j \leq d^{(l)} & \text{Layers} \end{cases}$$

$$\mathbf{x}_{j}^{(l)} = \theta(z_{j}^{(l)}) = \theta(\sum_{i=0}^{d^{(l-1)}} \mathbf{w}_{ij}^{l} \mathbf{x}_{i}^{(l-1)})$$

Apply **x** to
$$\mathbf{x}_1^{(0)} \dots \mathbf{x}_{d^{(0)}}^{(0)}
ightarrow \mathbf{x}_1^{(L)} = h(\mathbf{x})$$

$$\theta(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

◆□▶ ◆■▶ ◆ ■▶ ◆ ■ ▶ ● ■ ⑦ Q @ 50/75

Applying SGD

$$J(f(\mathbf{x}_n), y_n)) = J(\mathbf{w})$$

► To implement SGD, we need the gradient

$$\nabla \mathbf{J}(\mathbf{w}) = \frac{\partial J(\mathbf{w})}{\partial w_{ij}^{(l)}}, \quad \text{for all } i, j, l$$

Compute $\nabla J(\mathbf{w})$

- We can evaluate $\nabla \mathbf{J}(\mathbf{w}) = \frac{\partial J(\mathbf{w})}{\partial w_{ij}^{(l)}}$ one by one: analytically or numerically
- A trick for efficient computation:

δ for the final layer

For the final layer l = L and j = 1:

$$\begin{split} \delta_1^{(L)} &= \frac{\partial J(\mathbf{w})}{\partial z_1^{(L)}} \\ J(\mathbf{w}) &= \left(x_1^{(L)} - y_n\right)^2 \\ x_1^{(L)} &= \theta\left(z_1^{(L)}\right) \\ \text{Since } \theta'(z) &= 1 - \theta^2(z) \quad \text{ for the tanh} \\ \frac{\partial J(\mathbf{w})}{\partial z_1^{(L)}} &= 2\left(\theta\left(z_1^{(L)}\right) - y_n\right)\left(1 - \theta^2(z_1^{(L)})\right) \\ \frac{\partial J(\mathbf{w})}{\partial z_1^{(L)}} &= 2\left(x_1^{(L)} - y_n\right)\left(1 - \left(x_1^{(L)}\right)^2\right) \end{split}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 52/75

Backpropagation of δ

$$\begin{split} \delta_i^{(l-1)} &= \frac{\partial J(\mathbf{w})}{\partial z_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial J(\mathbf{w})}{\partial z_j^{(l)}} \times \frac{\partial z_j^{(l)}}{\partial x_i^{(l-1)}} \times \frac{\partial x_i^{(l-1)}}{\partial z_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \delta_j^{(l)} \times w_{ij}^{(l)} \times \theta' \left(z_i^{(l-1)} \right) \\ \delta_j^{(l-1)} &= \left(1 - \left(x_i^{(l-1)} \right)^2 \right) \sum_{j=1}^{d^{(l)}} w_{ij}^{(l)} \delta_j^{(l)} \end{split}$$

▲□▶ ▲ □▶ ▲ □ ▶ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■ ■ ∧ ■

Backpropagation Algorithm

- linitialize all weights $w_{ij}^{(l)}$ at small values chosen **at random**
- \blacktriangleright Pick one sample $n \in \{1,2,\cdots,N\}$ uniformly at random
- **Forward Part:** Compute all $x_i^{(l)}$
- **•** Backward Part: Compute all $\delta_i^{(l)}$
- Update the weights:

$$w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta \frac{\partial \mathbf{J}(\mathbf{w})}{\partial w_{ij}^{(l)}}$$
$$w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta x_i^{(l-1)} \delta_j^{(l)}$$

Iterate until it is time to stop.

When is the best time to stop?

Training Neural Networks

IVERSITY OF

Li, H. et al. Visualizing the loss landscape of neural nets (2017).

Loss Functions Can Be Difficult to Optimize

Remember: Optimization through gradient descent:

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

 $\eta \rightarrow$ How can we set the learning rate?

Training Neural Networks: Loss Optimization

- Small learning rate converges slowly and gets stuck in false local minima
- Large learning rates overshoot, become unstable and diverge
- Stable learning rates converge smoothly and avoid local minima

< □ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 58/75

How to select the learning rate

Idea 1:

Try a lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landspace

Adaptive Learning Rates

Learning Rates are not longer fixed

- Can be made larger or smaller depending on:
 - how large the gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ♀ 60/75

Neural Networks in Practice: Mini-batches

Gradient Descent:

Compute:

 $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} \rightarrow \text{ Can be very computational intensive to compute!}$

Stochastic Gradient Descent:

Pick a single point i and compute:

 $\frac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}} \rightarrow \mathsf{Easy \ to \ compute \ but \ very \ noisy \ (stochastic)!}$

Neural Networks in Practice: Mini-batches

Mini-batches:

Pick B pints and compute:

$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\mathbf{W})}{\partial \mathbf{W}}$$

- More accurate estimation of the gradient
 - Smoother convergence
 - Allows for large learning rates
- Lead to fast training
 - Can parallelize
 - Achieve significant speed increases on GPU's

Neural Networks in Practice: Overfitting

The overfitting problem:

What is it?

Technique that constrains our optimization problem to discourage complex models

Why we need it?

Improve generalization of our models on unseen data

Dropout:

During training, at each iteration, randomly set some activations to 0

Dropout:

During training, at each iteration, randomly set some activations to 0

Dropout:

During training, at each iteration, randomly set some activations to 0

- ▶ Typically "drop" 50% of activations in layer
- Forces network to not rely on any node

Early Stopping

Stop training before we have a chance to overfit

Working with Real Data Sets: The Iris Data set

 ${\bf x}$ is a $150\times 4 \rightarrow$ it has 4 features and we have 150 samples

ELAWARE

Image Features

- Width
 ▶ Petal
 ▶ Sepal
- 2. Length
 - Petal
 - Sepal

Approach

Generate fully connected layers with multiple activation functions to solve a multi feature classification problem.

<□ > < ② > < ≧ > < ≧ > < ≧ > < ≧ > ○ Q ○ 71/75

FSAN/ELEG815

An efficient coding method: Keras

< □ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q @ 72/75

Solutions

Accurate boundary lines for Classification

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 73/75

Code

```
input = keras.layers.Input(4,name="Input")
hidden = keras.layers.Dense(4,activation='sigmoid',name="Hidden")(input)
output = keras.layers.Dense(3,activation='sigmoid', name="Output")(hidden)
modelIRIS = keras.Model(input,output)
modelIRIS.layers[1].set_weights([w1,b1])
modelIRIS.layers[2].set_weights([w2,b2])
keras.utils.plot_model(modelIRIS,show_shapes=True)
# print(modeLIRIS.predict(np.array([0,1,1,2],ndmin=2)))
```

```
X,y = datasets.make_blobs(centers = 4,random_state=2,n_samples = 500)
plt.scatter(X[:,0],X[:,1],c=y)
plt.title("Hand-made Example")
plt.show()
```


Acknowledgement

Alexander Amini and Ava Soleimanym, MIT 6.S191: Introduction to Deep Learning, IntroToDeepLearning.com