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What is Deep Learning?

Artificial
 Inteligence

Any technique  that enables
computers to mimic

human behavior

Machine Learning
Ability to learn without 

explicity being programed Deep Learning
Extract patterns from data using

neural networks

+
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Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in
practice

Can we learn the underlying features directly from data?

Line and Edges Eyes, Nose and Ears Facial Structure
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Why Now?
Neural Networks date back decades, so why the resur-
gence?

1. Big Data

I Large
Datasets

I Easier
Collection and
Storage

2. Hardware

I Graphics
Processing
Units (GPUs)

I Massively
Parallelizable

3. Software

I Improved
Techniques

I New Models
I Toolboxes
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The Perceptron: Forward Propagation

Output

Non-linear
activation function

Linear combination 
of inputs

Inputs     Weights     Sum       Non-linearity          Output   
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The Perceptron: Forward Propagation

Output

Non-linear
activation function

Linear combination 
of inputs

Inputs     Weights     Sum       Non-linearity          Output   

1
Bias
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The Perceptron: Forward Propagation

Inputs     Weights     Sum       Non-linearity          Output   
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The Perceptron: Forward Propagation

Inputs     Weights     Sum       Non-linearity          Output   
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Common Activation Functions

Sigmoid Function
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The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into
the network

What if we want to build a neural network to distinguish green vs red points?
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The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into

the network

Linear activation functions
produce linear decisions no

matter the network size

Non-linearities allow us to
approximate arbitrarily complex

functions
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The Perceptron: Example

1
We have w0 = 1 and W =

C
3

≠2

D

‚y = g(w0 +X
€

W)

‚y = g

Q

aw0 +
C
x1
x2

D€ C
3

≠2

DR

b

‚y = g( 1+3x1 ≠2x2¸ ˚˙ ˝
This is just a line in 2D

)
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The Perceptron: Example

Assume X =
C
≠1
2

D

:

‚y = g(1+(3◊≠1)≠ (2◊2))
‚y = g(≠6) ¥ 0.0002

1
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The Perceptron: Example

1

‚y = g(1+3x1 ≠2x2)
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Building Neural Network with Perceptron

‚y = g(w0 +X
€

W)

1

Inputs     Weights     Sum       Non-linearity          Output   
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Building Neural Network with Perceptron

z = w0 +
mÿ

j=1
xjwj
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Combining Perceptrons

Consider the target function in the fig-
ure which is a Boolean XOR function.

The perceptron cannot implement this
classification.

Decompose the f into two perceptrons,
corresponding to the lines in the figure.
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Combining Perceptrons

f = XOR(z1,z2)

=

f g1(x) = sign(w€
1 x) g2(x) = sign(w€

2 x)
Rewrite f using OR and AND operations:

f = g1g2 +g1g2

where AND is represented by multiplication, OR by addition and overbar for
negation.
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Combining Perceptrons
OR and AND can be implemented by the perceptron:

OR(x1,x2) = sign(x1 + x2 +1.5)

AND(x1,x2) = sign(x1 + x2 ≠1.5)

1 1

Everything coming to a node is summed and then transformed by sign(·) to
get the final output
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Creating Layers

f = z1z2 + z1z2

1 1 1

(a) OR of the inputs z1z2 and z1z2 (b) The blue and red weights simulate the
required ANDS (z1z2 and z1z2). Negative in te weights handle negations.
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The Multilayer Perceptron

z1(x) = w
€
1 x and z2(x) = w

€
2 x are perceptrons:

1
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The Multilayer Perceptron

z1(x) = w
€
1 x and z2(x) = w

€
2 x are perceptrons:

3 layers
compare to the perceptron

(one)

"Feedforward"
No backward pointing arrows and no

jumps to other layers
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A Powerful Model
Let’s consider now a dis target function:

We can model more complex functions by adding more nodes (hidden unites)
in the hidden layers (more perceptrons in the decomposition of f)
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Multi-output Perceptron
Because all inputs are densely connected to all outputs, these layers are called
Dense layers:

zi = w0,i +
mÿ

j=1
xjwj,i
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Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 201856

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b
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Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 201858

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95
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Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Interpreting a Linear Classifier: Visual Viewpoint

60
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Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Interpreting a Linear Classifier: Geometric Viewpoint

61

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud
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Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Linear Classifier: Three Viewpoints

63

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Multi-output Multi-layer perceptron

z
(1)
i = w

(1)
0,i + qm

j=1 x
(0)
j w

(1)
j,i ŷi = g(w(2)

0,i + qm
j=1 x

(1)
j w

(2)
j,i ) x

(1)
j = g(z(1)

j )
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Multi-output Multi-layer perceptron

z3 = w(1)
0,3 +

mÿ

j=1
xjw(1)

j,3

z3 = w(1)
0,3 + x1w(1)

1,3 + x2w(1)
2,3 + x3w(1)

3,3
Generally

z = W
(1)€

x
(0) +w(1)

0
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Single Layer Neural Network

Inputs Hidden Output 
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Network with many layers - Example
Classify "1" vs "5". Decompose the two digits into basic components:
I Every "1" should contain „1, „2 and „3
I Every "5" should contain „3, „4, „5 and „6, perhaps a little of „1

These shapes are features of the input. We want „1 to be large (close to 1) if
the corresponding feature is in the input image and small (close to -1) if not.
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Network with many layers - Example
„1 is feature function which computes the presence (+1) and absence (-1) of

the corresponding feature.

If we feed in "1", „1, „2 and „3 compute +1 and „4, „5 and „6 compute ≠1.
Combining with the signs of the weights, z1 will be positive and z2 will be

negative.



34/75

FSAN/ELEG815

Deep Neural Network

When f is not strictly decomposable into perceptrons, but the decision
boundary is smooth (◊), then a multilayer perceptron can be close to

implementing f .
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Deep Neural Network

zk,i = w(k)
0,i +

mÿ

j=1
x(k≠1)

j w(k)
j,i

Inputs Hidden Output 

... ... 
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Combining Perceptrons

Consider a simple perceptron z(x) =
w

€
x:

I ◊(z) =sign(z) : Learning the
weights is hard combinatorial
problem (not smooth)

I ◊(z) = tanh(z) : di�erentiable
approximation to sign(·) that
allows analytic methods for
learning

◊(z) = tanh(z) = ez ≠ e≠z

ez + e≠z
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Example problem

Will I pass this class? Let’s
start with a simple two feature
model:
I x1 Number of lectures you

attend
I x2 Hours spent studying

Legend

      Pass

      Fail
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Example problem: Will I pass this class?
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Quantifying Loss

The loss of a network measures the cost incurred from incorrect predictions



40/75

FSAN/ELEG815

Empirical Loss

The empirical loss measures the total loss over the entire dataset
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability
between 0 and 1
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Mean Square Error Loss

Mean square error loss can be used with models that output a continuous
real numbers
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Training Neural Networks: Loss Optimization

Find the network weights that achieve the lowest loss

W
ú = argmin

W

1
n

nÿ

i=1
L

1
f(xi;W),y(i)

2

W
ú = argmin

W

J(W)

Remember:

W =
Ó
W

(0),W(1), ...
Ô

The loss function is a function of the network weights
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Training Neural Networks: Loss Optimization

1. Randomly pick an initial (w1,w2)
2. Compute the gradient:

ˆJ(W)
ˆW

3. Take a small step in the opposite
direction of the gradient

4. Repeat until convergence
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Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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How the network operates
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How the network operates

w(l)
ij =

Y
___]

___[

1 Æ l Æ L Layers
0 Æ i Æ d(l≠1) Layers
1 Æ j Æ d(l) Layers

x(l)
j = ◊(z(l)

j ) = ◊(qd(l≠1)
i=0 wl

ijx
(l≠1)
i )

Apply x to x(0)
1 . . .x(0)

d(0) æ x(L)
1 = h(x) ◊(z) = tanh(z) = ez ≠ e≠z

ez + e≠z
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Applying SGD

▶ All the weights w =
{

w
(l)
ij

}
determine f(x)

▶ Error on example (xn,yn) is

J(f(xn),yn)) = J(w)
▶ To implement SGD, we need the gradient

∇J(w) = ∂J(w)
∂w

(l)
ij

, for all i, j, l
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Compute ∇J(w)

▶ We can evaluate ∇J(w) = ∂J(w)
∂w

(l)
ij

one by one:

analytically or numerically
▶ A trick for efficient computation:

∂J(w)
∂w

(l)
ij

= ∂J(w)
∂z

(l)
j

×
∂z

(l)
j

∂w
(l)
ij

▶ We have ∂z
(l)
j

∂w
(l)
ij

= x
(l−1)
i

▶ We only need: ∂J(w)
∂z

(l)
j

= δ
(l−1)
j
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δ for the final layer
For the final layer l = L and j = 1 :

δ
(L)
1 = ∂J(w)

∂z
(L)
1

J(w) =
(

x
(L)
1 −yn

)2

x
(L)
1 = θ

(
z

(L)
1

)
Since θ′(z) = 1− θ2(z) for the tanh
∂J(w)
∂z

(L)
1

= 2
(

θ
(

z
(L)
1

)
−yn

)(
1− θ2(z(L)

1 )
)

∂J(w)
∂z

(L)
1

= 2
(

x
(L)
1 −yn

)(
1−

(
x

(L)
1

)2)
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Backpropagation of δ

δ
(l−1)
i = ∂J(w)

∂z
(l−1)
i

=
d(l)∑
j=1

∂J(w)
∂z

(l)
j

×
∂z

(l)
j

∂x
(l−1)
i

× ∂x
(l−1)
i

∂z
(l−1)
i

=
d(l)∑
j=1

δ
(l)
j ×w

(l)
ij × θ′

(
z

(l−1)
i

)

δ
(l−1)
j =

(
1−

(
x

(l−1)
i

)2) d(l)∑
j=1

w
(l)
ij δ

(l)
j
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Backpropagation Algorithm
I Initialize all weights w(l)

ij at small values chosen at random

I Pick one sample n œ {1,2, · · · ,N} uniformly at random
I Forward Part: Compute all x(l)

j

I Backward Part: Compute all ”(l)
j

I Update the weights:

w(l)
ij Ω w(l)

ij ≠÷
ˆJ(w)
ˆ w(l)

ij

w(l)
ij Ω w(l)

ij ≠÷x(l≠1)
i ”(l)

j

I Iterate until it is time to stop.
When is the best time to stop?
Considering a marginal error improvement, a maximum error and also a
maximum number of iterations is a good practice.
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Training Neural Networks

Li, H. et al. Visualizing the loss landscape of neural nets (2017).
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Loss Functions Can Be Di�cult to Optimize

Remember: Optimization through gradient descent:

W Ω W≠÷
ˆJ(W)

ˆW

÷ æ How can we set the learning rate?
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Training Neural Networks: Loss Optimization

I Small learning rate converges
slowly and gets stuck in false local
minima

I Large learning rates overshoot,
become unstable and diverge

I Stable learning rates converge
smoothly and avoid local minima



59/75

FSAN/ELEG815

How to select the learning rate

Idea 1:

Try a lots of di�erent learning rates and see what works "just right"

Idea 2:

Do something smarter!
Design an adaptive learning rate that "adapts" to the landspace
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Adaptive Learning Rates

I Learning Rates are not longer fixed
I Can be made larger or smaller depending on:

I how large the gradient is
I how fast learning is happening
I size of particular weights
I etc...
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Neural Networks in Practice: Mini-batches

Gradient Descent:

Compute:

ˆJ(W)
ˆW

æ Can be very computational intensive to compute!

Stochastic Gradient Descent:

Pick a single point i and compute:

ˆJi(W)
ˆW

æ Easy to compute but very noisy (stochastic)!
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Neural Networks in Practice: Mini-batches

Mini-batches:

Pick B pints and compute:

ˆJ(W)
ˆW

= 1
B

Bÿ

k=1

ˆJk(W)
ˆW

I More accurate estimation of the gradient
I Smoother convergence
I Allows for large learning rates

I Lead to fast training
I Can parallelize
I Achieve significant speed increases on GPU’s
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Neural Networks in Practice: Overfitting

The overfitting problem:
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Neural Networks in Practice: Regularization

What is it?

Technique that constrains our optimization problem to discourage complex
models

Why we need it?

Improve generalization of our models on unseen data
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Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0
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Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0
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Neural Networks in Practice: Regularization 1
Dropout:
During training, at each iteration, randomly set some activations to 0
I Typically "drop" 50% of activations in layer
I Forces network to not rely on any node
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Neural Networks in Practice: Regularization 2

Early Stopping

Stop training before we have a chance to overfit
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Working with Real Data Sets: The Iris Data set
x is a 150◊4 æ it has 4 features and we have 150 samples
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Image Features

1. Width
I Petal
I Sepal

2. Length
I Petal
I Sepal
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Approach

Generate fully connected layers
with multiple activation func-
tions to solve a multi feature
classification problem.
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An e�cient coding method: Keras
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Solutions

Accurate boundary lines for Classification
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Code
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