
FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce
Department of Electrical and Computer Engineering

University of Delaware

X: Neural Networks

1/75

FSAN/ELEG815

What is Deep Learning?

Artificial
 Inteligence

Any technique that enables
computers to mimic

human behavior

Machine Learning
Ability to learn without

explicity being programed Deep Learning
Extract patterns from data using

neural networks

+

2/75

FSAN/ELEG815

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in
practice

Can we learn the underlying features directly from data?

Line and Edges Eyes, Nose and Ears Facial Structure

3/75

FSAN/ELEG815

Why Now?
Neural Networks date back decades, so why the resur-
gence?

1. Big Data

I Large
Datasets

I Easier
Collection and
Storage

2. Hardware

I Graphics
Processing
Units (GPUs)

I Massively
Parallelizable

3. Software

I Improved
Techniques

I New Models
I Toolboxes

4/75

FSAN/ELEG815

The Perceptron: Forward Propagation

Output

Non-linear
activation function

Linear combination
of inputs

Inputs Weights Sum Non-linearity Output

5/75

FSAN/ELEG815

The Perceptron: Forward Propagation

Output

Non-linear
activation function

Linear combination
of inputs

Inputs Weights Sum Non-linearity Output

1
Bias

6/75

FSAN/ELEG815

The Perceptron: Forward Propagation

Inputs Weights Sum Non-linearity Output

1

7/75

FSAN/ELEG815

The Perceptron: Forward Propagation

Inputs Weights Sum Non-linearity Output

1

8/75

FSAN/ELEG815

Common Activation Functions

Sigmoid Function

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(x) = 1
1+ e≠x

gÕ(x) = g(x)(1≠g(x))

Hyperbolic Function

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

g(x) = ex +≠e≠x

ex + e≠x

gÕ(x) = 1≠g(x)2

Rectified Linear Unit
(ReLU)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(x) = max(0,x)

gÕ(x) =
Y
]

[
1 x > 0
0 otherwise

9/75

FSAN/ELEG815

The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into
the network

What if we want to build a neural network to distinguish green vs red points?

10/75

FSAN/ELEG815

The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into

the network

Linear activation functions
produce linear decisions no

matter the network size

Non-linearities allow us to
approximate arbitrarily complex

functions

11/75

FSAN/ELEG815

The Perceptron: Example

1
We have w0 = 1 and W =

C
3

≠2

D

‚y = g(w0 +X
€

W)

‚y = g

Q

aw0 +
C
x1
x2

D€ C
3

≠2

DR

b

‚y = g(1+3x1 ≠2x2¸ ˚˙ ˝
This is just a line in 2D

)

12/75

FSAN/ELEG815

The Perceptron: Example

Assume X =
C
≠1
2

D

:

‚y = g(1+(3◊≠1)≠ (2◊2))
‚y = g(≠6) ¥ 0.0002

1

13/75

FSAN/ELEG815

The Perceptron: Example

1

‚y = g(1+3x1 ≠2x2)

14/75

FSAN/ELEG815

Building Neural Network with Perceptron

‚y = g(w0 +X
€

W)

1

Inputs Weights Sum Non-linearity Output

15/75

FSAN/ELEG815

Building Neural Network with Perceptron

z = w0 +
mÿ

j=1
xjwj

16/75

FSAN/ELEG815

Combining Perceptrons

Consider the target function in the fig-
ure which is a Boolean XOR function.

The perceptron cannot implement this
classification.

Decompose the f into two perceptrons,
corresponding to the lines in the figure.

17/75

FSAN/ELEG815

Combining Perceptrons

f = XOR(z1,z2)

=

f g1(x) = sign(w€
1 x) g2(x) = sign(w€

2 x)
Rewrite f using OR and AND operations:

f = g1g2 +g1g2

where AND is represented by multiplication, OR by addition and overbar for
negation.

18/75

FSAN/ELEG815

Combining Perceptrons
OR and AND can be implemented by the perceptron:

OR(x1,x2) = sign(x1 + x2 +1.5)

AND(x1,x2) = sign(x1 + x2 ≠1.5)

1 1

Everything coming to a node is summed and then transformed by sign(·) to
get the final output

19/75

FSAN/ELEG815

Creating Layers

f = z1z2 + z1z2

1 1 1

(a) OR of the inputs z1z2 and z1z2 (b) The blue and red weights simulate the
required ANDS (z1z2 and z1z2). Negative in te weights handle negations.

20/75

FSAN/ELEG815

The Multilayer Perceptron

z1(x) = w
€
1 x and z2(x) = w

€
2 x are perceptrons:

1

21/75

FSAN/ELEG815

The Multilayer Perceptron

z1(x) = w
€
1 x and z2(x) = w

€
2 x are perceptrons:

3 layers
compare to the perceptron

(one)

"Feedforward"
No backward pointing arrows and no

jumps to other layers

22/75

FSAN/ELEG815

A Powerful Model
Let’s consider now a dis target function:

We can model more complex functions by adding more nodes (hidden unites)
in the hidden layers (more perceptrons in the decomposition of f)

23/75

FSAN/ELEG815

Multi-output Perceptron
Because all inputs are densely connected to all outputs, these layers are called
Dense layers:

zi = w0,i +
mÿ

j=1
xjwj,i

24/75

FSAN/ELEG815

Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 201856

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

25/75

FSAN/ELEG815

Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 201858

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95

26/75

FSAN/ELEG815

Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Interpreting a Linear Classifier: Visual Viewpoint

60

27/75

FSAN/ELEG815

Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Interpreting a Linear Classifier: Geometric Viewpoint

61

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

28/75

FSAN/ELEG815

Multi-output Perceptron

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Linear Classifier: Three Viewpoints

63

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

29/75

FSAN/ELEG815

Multi-output Multi-layer perceptron

z
(1)
i = w

(1)
0,i + qm

j=1 x
(0)
j w

(1)
j,i ŷi = g(w(2)

0,i + qm
j=1 x

(1)
j w

(2)
j,i) x

(1)
j = g(z(1)

j)

30/75

FSAN/ELEG815

Multi-output Multi-layer perceptron

z3 = w(1)
0,3 +

mÿ

j=1
xjw(1)

j,3

z3 = w(1)
0,3 + x1w(1)

1,3 + x2w(1)
2,3 + x3w(1)

3,3
Generally

z = W
(1)€

x
(0) +w(1)

0

31/75

FSAN/ELEG815

Single Layer Neural Network

Inputs Hidden Output

32/75

FSAN/ELEG815

Network with many layers - Example
Classify "1" vs "5". Decompose the two digits into basic components:
I Every "1" should contain „1, „2 and „3
I Every "5" should contain „3, „4, „5 and „6, perhaps a little of „1

These shapes are features of the input. We want „1 to be large (close to 1) if
the corresponding feature is in the input image and small (close to -1) if not.

33/75

FSAN/ELEG815

Network with many layers - Example
„1 is feature function which computes the presence (+1) and absence (-1) of

the corresponding feature.

If we feed in "1", „1, „2 and „3 compute +1 and „4, „5 and „6 compute ≠1.
Combining with the signs of the weights, z1 will be positive and z2 will be

negative.

34/75

FSAN/ELEG815

Deep Neural Network

When f is not strictly decomposable into perceptrons, but the decision
boundary is smooth (◊), then a multilayer perceptron can be close to

implementing f .

35/75

FSAN/ELEG815

Deep Neural Network

zk,i = w(k)
0,i +

mÿ

j=1
x(k≠1)

j w(k)
j,i

Inputs Hidden Output

... ...

36/75

FSAN/ELEG815

Combining Perceptrons

Consider a simple perceptron z(x) =
w

€
x:

I ◊(z) =sign(z) : Learning the
weights is hard combinatorial
problem (not smooth)

I ◊(z) = tanh(z) : di�erentiable
approximation to sign(·) that
allows analytic methods for
learning

◊(z) = tanh(z) = ez ≠ e≠z

ez + e≠z

37/75

FSAN/ELEG815

Example problem

Will I pass this class? Let’s
start with a simple two feature
model:
I x1 Number of lectures you

attend
I x2 Hours spent studying

Legend

 Pass

 Fail

38/75

FSAN/ELEG815

Example problem: Will I pass this class?

39/75

FSAN/ELEG815

Quantifying Loss

The loss of a network measures the cost incurred from incorrect predictions

40/75

FSAN/ELEG815

Empirical Loss

The empirical loss measures the total loss over the entire dataset

41/75

FSAN/ELEG815

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability
between 0 and 1

42/75

FSAN/ELEG815

Mean Square Error Loss

Mean square error loss can be used with models that output a continuous
real numbers

43/75

FSAN/ELEG815

Training Neural Networks: Loss Optimization

Find the network weights that achieve the lowest loss

W
ú = argmin

W

1
n

nÿ

i=1
L

1
f(xi;W),y(i)

2

W
ú = argmin

W

J(W)

Remember:

W =
Ó
W

(0),W(1), ...
Ô

The loss function is a function of the network weights

44/75

FSAN/ELEG815

Training Neural Networks: Loss Optimization

1. Randomly pick an initial (w1,w2)
2. Compute the gradient:

ˆJ(W)
ˆW

3. Take a small step in the opposite
direction of the gradient

4. Repeat until convergence

45/75

FSAN/ELEG815

Computing Gradients: Backpropagation

46/75

FSAN/ELEG815

Computing Gradients: Backpropagation

47/75

FSAN/ELEG815

Computing Gradients: Backpropagation

48/75

FSAN/ELEG815

How the network operates

49/75

FSAN/ELEG815

How the network operates

w(l)
ij =

Y
___]

___[

1 Æ l Æ L Layers
0 Æ i Æ d(l≠1) Layers
1 Æ j Æ d(l) Layers

x(l)
j = ◊(z(l)

j) = ◊(qd(l≠1)
i=0 wl

ijx
(l≠1)
i)

Apply x to x(0)
1 . . .x(0)

d(0) æ x(L)
1 = h(x) ◊(z) = tanh(z) = ez ≠ e≠z

ez + e≠z

50/75

FSAN/ELEG815

Applying SGD

▶ All the weights w =
{

w
(l)
ij

}
determine f(x)

▶ Error on example (xn,yn) is

J(f(xn),yn)) = J(w)
▶ To implement SGD, we need the gradient

∇J(w) = ∂J(w)
∂w

(l)
ij

, for all i, j, l

51/75

FSAN/ELEG815

Compute ∇J(w)

▶ We can evaluate ∇J(w) = ∂J(w)
∂w

(l)
ij

one by one:

analytically or numerically
▶ A trick for efficient computation:

∂J(w)
∂w

(l)
ij

= ∂J(w)
∂z

(l)
j

×
∂z

(l)
j

∂w
(l)
ij

▶ We have ∂z
(l)
j

∂w
(l)
ij

= x
(l−1)
i

▶ We only need: ∂J(w)
∂z

(l)
j

= δ
(l−1)
j

52/75

FSAN/ELEG815

δ for the final layer
For the final layer l = L and j = 1 :

δ
(L)
1 = ∂J(w)

∂z
(L)
1

J(w) =
(

x
(L)
1 −yn

)2

x
(L)
1 = θ

(
z

(L)
1

)
Since θ′(z) = 1− θ2(z) for the tanh
∂J(w)
∂z

(L)
1

= 2
(

θ
(

z
(L)
1

)
−yn

)(
1− θ2(z(L)

1)
)

∂J(w)
∂z

(L)
1

= 2
(

x
(L)
1 −yn

)(
1−

(
x

(L)
1

)2)

53/75

FSAN/ELEG815

Backpropagation of δ

δ
(l−1)
i = ∂J(w)

∂z
(l−1)
i

=
d(l)∑
j=1

∂J(w)
∂z

(l)
j

×
∂z

(l)
j

∂x
(l−1)
i

× ∂x
(l−1)
i

∂z
(l−1)
i

=
d(l)∑
j=1

δ
(l)
j ×w

(l)
ij × θ′

(
z

(l−1)
i

)

δ
(l−1)
j =

(
1−

(
x

(l−1)
i

)2) d(l)∑
j=1

w
(l)
ij δ

(l)
j

54/75

FSAN/ELEG815

Backpropagation Algorithm
I Initialize all weights w(l)

ij at small values chosen at random

I Pick one sample n œ {1,2, · · · ,N} uniformly at random
I Forward Part: Compute all x(l)

j

I Backward Part: Compute all ”(l)
j

I Update the weights:

w(l)
ij Ω w(l)

ij ≠÷
ˆJ(w)
ˆ w(l)

ij

w(l)
ij Ω w(l)

ij ≠÷x(l≠1)
i ”(l)

j

I Iterate until it is time to stop.
When is the best time to stop?
Considering a marginal error improvement, a maximum error and also a
maximum number of iterations is a good practice.

55/75

FSAN/ELEG815

56/75

FSAN/ELEG815

Training Neural Networks

Li, H. et al. Visualizing the loss landscape of neural nets (2017).

57/75

FSAN/ELEG815

Loss Functions Can Be Di�cult to Optimize

Remember: Optimization through gradient descent:

W Ω W≠÷
ˆJ(W)

ˆW

÷ æ How can we set the learning rate?

58/75

FSAN/ELEG815

Training Neural Networks: Loss Optimization

I Small learning rate converges
slowly and gets stuck in false local
minima

I Large learning rates overshoot,
become unstable and diverge

I Stable learning rates converge
smoothly and avoid local minima

59/75

FSAN/ELEG815

How to select the learning rate

Idea 1:

Try a lots of di�erent learning rates and see what works "just right"

Idea 2:

Do something smarter!
Design an adaptive learning rate that "adapts" to the landspace

60/75

FSAN/ELEG815

Adaptive Learning Rates

I Learning Rates are not longer fixed
I Can be made larger or smaller depending on:

I how large the gradient is
I how fast learning is happening
I size of particular weights
I etc...

61/75

FSAN/ELEG815

Neural Networks in Practice: Mini-batches

Gradient Descent:

Compute:

ˆJ(W)
ˆW

æ Can be very computational intensive to compute!

Stochastic Gradient Descent:

Pick a single point i and compute:

ˆJi(W)
ˆW

æ Easy to compute but very noisy (stochastic)!

62/75

FSAN/ELEG815

Neural Networks in Practice: Mini-batches

Mini-batches:

Pick B pints and compute:

ˆJ(W)
ˆW

= 1
B

Bÿ

k=1

ˆJk(W)
ˆW

I More accurate estimation of the gradient
I Smoother convergence
I Allows for large learning rates

I Lead to fast training
I Can parallelize
I Achieve significant speed increases on GPU’s

63/75

FSAN/ELEG815

Neural Networks in Practice: Overfitting

The overfitting problem:

64/75

FSAN/ELEG815

Neural Networks in Practice: Regularization

What is it?

Technique that constrains our optimization problem to discourage complex
models

Why we need it?

Improve generalization of our models on unseen data

65/75

FSAN/ELEG815

Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0

66/75

FSAN/ELEG815

Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0

67/75

FSAN/ELEG815

Neural Networks in Practice: Regularization 1
Dropout:
During training, at each iteration, randomly set some activations to 0
I Typically "drop" 50% of activations in layer
I Forces network to not rely on any node

68/75

FSAN/ELEG815

Neural Networks in Practice: Regularization 2

Early Stopping

Stop training before we have a chance to overfit

69/75

FSAN/ELEG815

Working with Real Data Sets: The Iris Data set
x is a 150◊4 æ it has 4 features and we have 150 samples

70/75

FSAN/ELEG815

Image Features

1. Width
I Petal
I Sepal

2. Length
I Petal
I Sepal

71/75

FSAN/ELEG815

Approach

Generate fully connected layers
with multiple activation func-
tions to solve a multi feature
classification problem.

72/75

FSAN/ELEG815

An e�cient coding method: Keras

73/75

FSAN/ELEG815

Solutions

Accurate boundary lines for Classification

74/75

FSAN/ELEG815

Code

75/75

FSAN/ELEG815

Acknowledgement

Alexander Amini and Ava Soleimanym, MIT 6.S191: Introduction to Deep
Learning, IntroToDeepLearning.com

