NING:
EIAWARE

FSAN/ELEG815

What is Deep Learning?

Artificial
Inteligence Machine Learning
Any technique that enables Ability to learn without
computers to mimic explicity being programed

human behavior

FSAN/ELEG815

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in
practice
Can we learn the underlying features directly from data?

Line and Edges Eyes, Nose and Ears Facial Structure

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Why Now?

Neural Networks date back decades, so why the resur-

V] gence?
1952 Stochastic Gradient
Di
escent 1. Big Data 2. Hardware 3. Software
1958 Preceptron > Large » Gra phiCS > ImprO\./ed
. - Learnable Weights Dataset Processing Techniques
atasets .
. _ Units (GPUs) > New Models
. » Easier > Massivel > Toolb
1986 Backpropagation Collection and asswe. y 0Oolboxes
» Multi-layer Perceptron Storage Parallelizable
1995 Deep Convolutional NN . wi™
. + Digit Recognition l M = .G E r
- Tensor

O PyTorch

NG Th el =
%ARE FSAN/ELEGS815

The Perceptron: Forward Propagation

Linear combination
Output of inputs

J |
9 Y=g g WiX;)

W\\
W Non-linear

Xo —2% 5 Y — » _f- y activation function
g

Xm
Inputs Weights Sum Non-linearity Output

NG Th el =
%ARE FSAN/ELEGS815

The Perceptron: Forward Propagation

Xm

Inputs

Weights

Sum

Non-linearity

Output Linear combination
uipu Bias of inputs

. ! 3
y =g (Wo+ > 24 W;X;)

Non-linear
activation function

<>

Output

FSAN/ELEG815

The Perceptron: Forward Propagation

y=9g(Wo—+ > ", W;X;)

Y=g (Wo + XTW)

J ’ X1 Wi
where: X= | : | and W= | :

Xm Wi,

1
Wo
X1 Wi
@ —
X —
2 y{
Xm

Inputs Weights Sum Non-linearity Output

FSAN/ELEG815

The Perceptron: Forward Propagation

Activation Functions

-~ T
1 y—g <wo +X w)
Wo
. » Example: sigmoid function
1
Wi _ _ 1
W2 E ? _I y
/ 14 e —
o 1
0.5+ :
Xm /
Inputs Weights Sum Non-linearity Output
L 1 0. 1 1 J

FSAN/ELEG815

Common Activation Functions

Rectified Linear Unit

Sigmoid Function _Hyperbolic Function (ReLU)
B —i@]] e —i@] — @)
s —g'(a) oo —g@ —d(@)
1 et +—e "
= S — r) =max(0,z
9@ =1 = 9(@) = 9() (0,2)

"(2) = qg(x)(1—q(x ") =1 — a(2)2 ’x:1$>0
J@) =g@)(1=g) J@)=1-9@)?) {0 o

NG Th el =
%ARE FSAN/ELEGS815

The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into
the network

o
0 o® B 40 5, %6
® ’0".(‘.' o\o"{lo":“";'
09 :.'.’o 03‘0’0‘:‘ °
ﬂ..t....,: 0%, ‘oody .:)

What if we want to build a neural network to distinguish green vs red points?

[TYor J / ' 5
%ARE FSAN/ELEGS815

The Importance of Activation Functions

The purpose of the activation function is to introduce non-linearities into

the network

<
g2 %5 o0 e
SN

Linear activation functions Non-linearities allow us to

produce linear decisions no approximate arbitrarily complex
matter the network size functions

FSAN/ELEG815

The Perceptron: Example

We have wp =1 and W = [_32]

! \ ?:g(WO+XTW)
o= yzg(WleTlBD
% X2 —2

X2 ~

y=9g(143x3—2x2)
—_— —
This is just a line in 2D

The Perceptron

Assume X = [

FSAN/ELEG815

X2

FSAN/ELEG815

The Perceptron: Example

¥y =g(1+3x; —2x32)

X2

z<0 <

1 1 y<05 1 /

\ //f\f(/
X 3 > ——> J y /»3?\

/ — :/ " 2,
X2 / 7

. 20
4

FSAN/ELEG815

Building Neural Network with Perceptron

y = g(wp+XTW)

1
Wo
X1 "
w > — [y
X2 W
Xm

Inputs Weights Sum Non-linearity Output

NG Th el =
[ﬁ"ﬁﬁ%&ﬁ FSAN/ELEGS815

Building Neural Network with Perceptron

N

X0 — 5| 7z Y=92

7

X
m
z=wo+) Xw;
=1

X1

FSAN/ELEG815

Combining Perceptrons

Consider the target function in the fig-
ure which is a Boolean XOR function.

The perceptron cannot implement this
classification.

Decompose the f into two perceptrons,
corresponding to the lines in the figure.

I

FSAN/ELEG815

- T
/ g1(x) = sign(w; x) g5(x) = sign(w4 x)
Rewrite f using OR and AND operations:

[=g18 +88

where AND is represented by multiplication, OR by addition and overbar for
negation.

FSAN/ELEG815

Combining Perceptrons
OR and AND can be implemented by the perceptron:
OR(x1,x2) = sign(x; +x2+ 1.5)

AND(x1,x2) = sign(xj +x2 — 1.5)

1 1
Xy ——> OR(X1,x;) = X1 ————> [AND(xy,X3)

/ /
X2 1 X2 1

Everything coming to a node is summed and then transformed by sign(-) to
get the final output

FSAN/ELEG815

Creating Layers

1

1.5
2125 ———> y
123] y
Z12;

(@) (b)

(a) OR of the inputs z1zz and Zjzy (b) The blue and red weights simulate the
required ANDS (z1Zz and Z1z3). Negative in te weights handle negations.

FSAN/ELEG815

The Multilayer Perceptron

z1(x) = w{ x and z3(x) = wJ x are perceptrons:

1&
Wi

X ———» sign(w ' X)

FSAN/ELEG815

The Multilayer Perceptron

z1(x) = w/ x and z(x) = w4 x are perceptrons:

1 1 1
1 "
X1 s ~ S A I y
-1 1
. IX1 iy
Wy - X
3 layers "Feedforward"
compare to the perceptron No backward pointing arrows and no

(one) jumps to other layers

NG Th el =
%ARE FSAN/ELEGS815

A Powerful Model

Let's consider now a dis target function:

B AN AR
S Z NI 7 N 7

Target 8 perceptrons 16 perceptrons

We can model more complex functions by adding more nodes (hidden unites)
in the hidden layers (more perceptrons in the decomposition of f)

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Multi-output Perceptron

Because all inputs are densely connected to all outputs, these layers are called
Dense layers:

X4

21 V= 9(z1)
X2

2, V= 9(22)
Xm

m
Zi = Wo,i + D XjWj
=1

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Multi-output Perceptron

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

v
56
02 | -05| 01 | 2.0 1.1 -96.8 | Cat score
231
1.5 1.3 | 21 0.0 + 32 | = 437.9 Dog score
L 24
e 0 (025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

NG Th el =
%ARE FSAN/ELEGS815

Multi-output Perceptron

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image
Algebraic Viewpoint :
f(x,W) = Wx)
A \ A\
02 | -0.5 15 [1.3 0 25
Stretch pixels into column
| : W

01 | 2.0 21 | 0.0 02 | -0.3
;\Hr 02 |05 01 | 20 E n -96.8 | Cat score
z"";»;, 1513 | 21 | 00 24 += 4379 | Dog score {7
e 0 025 02 |03 m 6195 | Ship score
Input image W 3 b) 3.2

FSAN/ELEG815

Multi-output Perceptron

Interpreting a Lmear Classifier: Visual Viewpoint

airplane 4 - Input image
automoblle.ﬂﬂ! 56 |7

bird 3 i)

cat .

deer 02 | -05 15 | 13 o | .25
dog o 01 | 20 21 | 00

frog

horse b E;I Eﬂ 12
truc

plane car bird cat deer dog frog horse ship truck

FSAN/ELEG815

Multi-output Perceptron

Interpreting a Linear Classifier: Geometric Viewpoint

o = f(x,W) = Wx + b

3

car classifier

airplane classifier, G
o:”:“ 5 N x 1

deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Multi-output Perceptron

Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint
f(x,W) = Wx One template
per class

plane ar bird at deer
o frog horse ship truck

FSAN/ELEG815

Geometric Viewpoint

Hyperplanes
cutting up space

NG Y/ (3 5
%ARE FSAN/ELEGS815

Multi-output Multi-layer perceptron

X1

X2

Xm

9(2a,)
Inputs Hidden Final Output

2V = w(() R 1x(.)wﬁ) y; = g(wgi) + 30 x(l)wﬁ)) x§~1) = g(zgl))

NG Th el =
%ARE FSAN/ELEGS815

Multi-output Multi-layer perceptron

Zq
m
1 1
z3 = Wi+ > x;wi g
22 Y1 j=1
(1)

1) (1) (1)
Z3 = W((),3 TX1Wy 3+ XoWg 3+ X3W3 3

Z3 y
? Generally

z=WHTxO0 W(()l)

Zn

FSAN/ELEG815

Single Layer Neural Network

Z4
X4

Zy y/;
2 | X X

Z3 }7\2
Xm

Zp

Inputs Hidden Output

FSAN/ELEG815

Network with many layers - Example
Classify "1" vs "5". Decompose the two digits into basic components:
» Every "1" should contain ¢1, ¢2 and ¢3
» Every "5" should contain ¢3, ¢4, ¢5 and ¢g, perhaps a little of ¢

L EE R

|
01 o)) O3 (o) (0] ol

These shapes are features of the input. We want ¢; to be large (close to 1) if
the corresponding feature is in the input image and small (close to -1) if not.

FSAN/ELEG815

Network with many layers - Example

¢1 is feature function which computes the presence (+1) and absence (-1) of
the corresponding feature.

y
'

+ve weight
-ve weight

I
/ \

isita’1'? | Z4 Z2 isita’s?

e

i I = - >

¢ P2 X¢gs ¢ 95 2
If we feed in "1", @1, ¢2 and ¢3 compute +1 and ¢4, ¢5 and ¢g compute —1.

Combining with the signs of the weights, z; will be positive and zs will be
negative.

FSAN/ELEG815

Deep Neural Network

¢
4

1 \
0 0 y
Xo 0 0 / 9(2)

input x hiddenlayers 1 <! < L outputlayerl! =L

When f is not strictly decomposable into perceptrons, but the decision
boundary is smooth (), then a multilayer perceptron can be close to
implementing f.

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Deep Neural Network

(k) (k=1) (k)
Zpi =W T %) Wy
j=1
Zi1
X1
Zy2 2
o - X - [X
Zy3 Y5
Xm
Zk,nk

Inputs Hidden Output

FSAN/ELEG815

Combining Perceptrons

linear
Consider a simple perceptron z(x) =

w'x: tanh

» 0(z) =sign(z) : Learning the
weights is hard combinatorial _
problem (not smooth) Sighh

» 0(z) =tanh(z) : differentiable
approximation to sign(-) that
allows analytic methods for

learning Z_ -z

e” —e

[TYor J / "(IR1E
[ﬁ"ﬁﬁ\f\mﬁ FSAN/ELEGS15

Example problem

o

. . g ®
Will | pass this class? Let's ¢ ®
start with a simple two feature i ® ®

. 3 ®
model: e [4]
(%] 5
» x; Number of lectures you 3
attend n o ° °
; S [
» x9 Hours spent studying)

x4 = Number of lectures you attend

[TYor I A V(Y 4
%Akﬁ FSAN/ELEGS815

Example problem: Will | pass this class?

Zq

o Predicted: 0.1
X(1) — [43 5] Z Y Actual: 1
X2

Z3

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Quantifying Loss

The loss of a network measures the cost incurred from incorrect predictions

Z4
X
X.. —1[4.5 2z v, Predicted: 0.1
1) — [)] Actual: 1
L x
Z3

L(f (%) ; W), yi))
Predicted Actual

[TYor 1/ V(Y Q1E
[ﬁ"ﬁﬁ*\f\mﬁ FSAN/ELEGS15

Empirical Loss

The empirical loss measures the total loss over the entire dataset

S 2 Jx) oy

4, 5] 0.17 % [1

2, 1 ™ - 0.8] % |0

X=15 8 “ i 06| v |1
X2

e - 23 . - S—

Also Known as: n
+ Objective functi‘on/z_" J(W) = .172,1=1 ‘C(f(x(i)?w)-.y(i))

« Cost function Predicted Actual
« Empirical Risk

NG Th el =
[ﬁ"ﬁﬁ%&ﬁ FSAN/ELEGS815

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability
between 0 and 1

Z4q f(xy _y_
(4, 5] . [0.1] % [1
2, 1| ™ R 0.8 % |0
X=15 38 “ 4 0.6« |1
X2
» A Z3 L . L
J(W) = %Z?ﬂiﬁ) log(f(x(iy; W) + (1 —y@)) log(1 — f(xi): W)
Actual Predicted Actual Predicted

mﬂ] 5/] }L F
[ﬁ"ﬁﬁ%&ﬁ FSAN/ELEGS815

Mean Square Error Loss

Mean square error loss can be used with models that output a continuous
real numbers

o . fx) oy
4, 5 30 90
2, 1| ™ - 80 20
X= 15 8 % 4 85 95
X2
| - - 23 | | |

J(W) = ,1_12:1:1 (y(i) - f(x(zt);W))z

Actual Predicted

FSAN/ELEG815

Training Neural Networks: Loss Optimization

Find the network weights that achieve the lowest loss

x 1
W* =argmin—» [(f(xi;W),y(i))
. W i

J(wy,Wa)

Remember:

W2 — W — {W(U) W(l),...}

Y

The loss function is a function of the network weights

FSAN/ELEG815

Training Neural Networks: Loss Optimization

J(Wi,ws)

+

W2

R +

= 4

. Randomly pick an initial (w1, ws2)

. Compute the gradient:

9.7 (W)
W

. Take a small step in the opposite

direction of the gradient

. Repeat until convergence

FSAN/ELEG815

Computing Gradients: Backpropagation

Wi

5.J (W)

— Use the chain rule!
8W2

9I(W) _ 9J(W) 9y
8W2 T 8/}7 8W2

FSAN/ELEG815

Computing Gradients: Backpropagation

W2

dJ(W) _ 8J(W) 8y
8W1 o 8? 8W1

DIW) _ OJ(W) 85 oz,
owq gy 0zq 0wy

FSAN/ELEG815

Computing Gradients: Backpropagation

W2

dJ(W) _ 8J(W) 8y
8W1 o 8? 8W1

DIW) _ OJ(W) 85 oz,
owq gy 0zq 0wy

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

How the network operates

1
X1 0
0 0(z)

oS

input x hidden layers 1 <! < L outputlayer! =L

1\
b ————3 0 ——
9/

X2

N7
\%%

Xd

How the network operates

1<I<L Layers
wg-) ={0<i<d®Y Layers
1<5< d® Layers

X;l) :9< J(l) (Ed(l 1) l (l—l))

Apply x to xgo) . ((1%) — ng) = h(x)

FSAN/ELEG815

linear

tanh

sign

0(z) =tanh(z) =

e”—e
e +e*

FSAN/ELEG815

Applying SGD

> All the weights w = {wg)} determine f(x)

» Error on example (X,,yy) is

J(f(xn)7yn)) = J<W)

» To implement SGD, we need the gradient

VI(w) = M?;;), for all 7,7,1
ow:-

v

FSAN/ELEG815

Compute VJ(w)

» We can evaluate VJ(w) = %J((VIV)) one by one:
w

] 0]
analytically or numerically T %

» A trick for efficient computation:

w % j
8wg-) sz(-l) awg)

> We have —s =z
ij
» We only need: a’]((‘g) = 5i=b
azj J

FSAN/ELEG815

0 for the final layer
For the final layer =L and j=1:

50 _ 9J(w)
625”

:ch) =0 (ziL)>

Since #'(2) =1—6%*(z) for the tanh
oJ(w
0 (<L>) =2(0(=1") —) (1-#1")
“1
aJ

B -s () (- ()

(
8z£

FSAN/ELEG815

Backpropagation of

0] |

FSAN/ELEG815

Backpropagation Algorithm
@)

> Initialize all weights w;; at small values chosen at random
Pick one sample n € {1,2,---, N} uniformly at random

1)

J

Backward Part: Compute all 5

| 4
» Forward Part: Compute all =
>

j
| 4

Update the weights:

(1) 0 9(w)
ij
wz(;) — wg) nxfl_l)éj(l)

» lterate until it is time to stop.
When is the best time to stop?
Considering a marginal error improvement, a maximum error and also a
maximum number of iterations is a good practice.

SAN/ELEGS815

NEURONS:
@ WITH HIGH ACTIVATION — POSITIVE WEIGHT
O WITH MEDIUM ACTIVATION — NEGATIVE WEIGHT

O WITH NO ACTIVATION

INPUT LAYER

OUTPUT LAYER

Li, H. et al. Visualizing the loss landscape of neural nets (2017).
o F

Q>

56/75

FSAN/ELEG815

Loss Functions Can Be Difficult to Optimize

Remember: Optimization through gradient descent:

9.7 (W)
W

17 — How can we set the learning rate?

W—W-—p

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Training Neural Networks: Loss Optimization

100

» Small learning rate converges
slowly and gets stuck in false local

minima %0
» Large learning rates overshoot, (W)

become unstable and diverge 0 ‘\mguess
» Stable learning rates converge

smoothly and avoid local minima T MR

FSAN/ELEG815

How to select the learning rate

Idea 1:
Try a lots of different learning rates and see what works "just right"

Idea 2:
Do something smarter!
Design an adaptive learning rate that "adapts" to the landspace

NG Th el =
%ARE FSAN/ELEGS815

Adaptive Learning Rates

» Learning Rates are not longer fixed
» Can be made larger or smaller depending on:
» how large the gradient is
» how fast learning is happening
» size of particular weights
> etc...

FSAN/ELEG815

Neural Networks in Practice: Mini-batches

Gradient Descent:
Compute:
0J(W)
oW

Stochastic Gradient Descent:
Pick a single point ¢« and compute:
9.J;(W)

oW

— Can be very computational intensive to compute!

— Easy to compute but very noisy (stochastic)!

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Neural Networks in Practice: Mini-batches

Mini-batches:
Pick B pints and compute:
dJ(W) 1 i
OW B,

(
W

9.7, (W)
B

» More accurate estimation of the gradient
» Smoother convergence
» Allows for large learning rates

» Lead to fast training

» Can parallelize
» Achieve significant speed increases on GPU'’s

FSAN/ELEG815

Neural Networks in Practice: Overfitting

The overfitting problem:

Y Y Y
o o
o o
. s ° . o
" at® g o s ”
a =] o s o
s® » 5T 8
X’)(>
Underfitting « Ideal Fit ——————————p Overfitting
Model does not have capacity Too complex, extra parameters,

to fully learn the data does not generalize well

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Neural Networks in Practice: Regularization

What is it?
Technique that constrains our optimization problem to discourage complex
models

Why we need it?
Improve generalization of our models on unseen data

mﬂ] 5/] }L F
[ﬁ"ﬁﬁ%&ﬁ FSAN/ELEGS815

Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0

Z1,1 Z2 1
X1 § % Z

Zy2 Z32 y
X2

213 Z33 Vs
X3 /

mﬂ] 5/] }L F
%ARE FSAN/ELEGS815

Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0

Z21
X1
Z12 Y1
X2

2 Y2
X3 /

Z1.4 Z 4

NG Th el =
%ARE FSAN/ELEGS815

Neural Networks in Practice: Regularization 1

Dropout:
During training, at each iteration, randomly set some activations to 0

> Typically "drop" 50% of activations in layer

» Forces network to not rely on any node

Z1,1
X4
222 22,4
X2 ;<;i
Z13 Z23 Zo4
X3
Z2.4

[TYor I A Tal =
%ARﬁ FSAN/ELEGS15

Neural Networks in Practice: Regularization 2

Early Stopping
Stop training before we have a chance to overfit

Underfintting Overfintting

Legend
Loss Stop training Testing
here!
Training

Training iterarions

FSAN/ELEG815

Working with Real Data Sets: The Iris Data set

x is a 150 x 4 — it has 4 features and we have 150 samples

Petal Petal

Image Features

1. Width

> Petal
» Sepal

2. Length

> Petal
» Sepal

w

Sepal width vs length
°

FSAN/ELEG815

Petal width vs length

o« & ;”r,%
%

Sepal width vs petal width

7

8

Sepal length vs Petals length

ou‘ié. ol

L el

2 3 4

FSAN/ELEG815

Approach

Generate fully connected layers
with multiple activation func-
tions to solve a multi feature
classification problem.

FSAN/ELEG815

An efficient coding method: Keras

input: | [(None, 4)]

Input: InputLayer sigmo Y1
output: | [(None, 4)] “
/
W
Ql; Y2
input: None, 4
Hidden: Dense i (None, 9) 4’3:"‘/
output: | (None, 4) ""‘\
Y3
input: | (None, 4)
Output: Dense Y1
output: | (None, 3)

FSAN/ELEG815

Solutions

Accurate boundary lines for Classification

50
25
L] L e.
00
¢ o
25 MR X ,w.
** o, *®
5.0 *
o o
-15 con b °
® . * o
-10.0 -~ b d
Y T
-125 .

@E WARﬁ FSAN/ELEG815

Code

input = keras.layers.Input(4,name="Input")

hidden = keras.layers.Dense(4,activation='sigmoid’,name="Hidden")(input)
output = keras.layers.Dense(3,activation="sigmoid', name="Output")(hidden)
modelIRIS = keras.Model(input,output)

modelIRIS.layers[1].set_weights([wl,bl])
modelIRIS.layers[2].set_weights([w2,b2])

keras.utils.plot_model(modelIRIS, show_shapes=True)

print(modelIRIS.predict(np.array([6,1,1,2],ndmin=2)))

X,y = datasets.make_blobs(centers = 4,random_state=2,n_samples = 500)

plt.scatter(X[:,0],X[:,1],c=y)
plt.title("Hand-made Example")
plt.show()

wl = np.array([[-1.5132886 , ©.78692156, -0.59150934, 1.3457433 , ©.11323632],
[-0.9712865 , -1.5561647 , -1.578427 , -0.7123345 , ©.75948274]])
bl = np.array([-2.8332472, 2.8457697, -3.736685 , -0.8151084, 4.7346272])
w2 = np.array([[1.3780868 , -4.0084467 , ©.0883714 , 2.5190408],
[0.37726903, ©.76979834, 1.5470964 , -5.40783],
[1.35855@4 , -1.799717 , 2.6277127 , -1.8256785],
[2.7409966 , 1.6214521 , -2.7639852 , -3.9925196],
[-5.5055437 , 2.8043787 , 1.1856915 , 3.2509704]])
b2 = np.array([-0.54620935, ©.57120425, -0.5757609 , ©.8131391])

FSAN/ELEG815

Acknowledgement

Alexander Amini and Ava Soleimanym, MIT 6.5191: Introduction to Deep
Learning, IntroToDeepLearning.com

